The interactions of winds from massive young stellar objects: X-ray emission, dynamics, and cavity evolution

نویسندگان

  • E. R. Parkin
  • J. M. Pittard
  • M. G. Hoare
  • N. J. Wright
  • J. J. Drake
چکیده

2D axis-symmetric hydrodynamical simulations are presented which explore the interaction of stellar and disk winds with surrounding infalling cloud material. The star, and its accompanying disk, blow winds inside a cavity cleared out by an earlier jet. The collision of the winds with their surroundings generates shock heated plasma which reaches temperatures up to ∼ 10 K. Attenuated X-ray spectra are calculated from solving the equation of radiative transfer along lines-of-sight. This process is repeated at various epochs throughout the simulations to examine the evolution of the intrinsic and attenuated flux. We find that the dynamic nature of the wind-cavity interaction fuels intrinsic variability in the observed emission on timescales of several hundred years. This is principally due to variations in the position of the reverse shock which is influenced by changes in the shape of the cavity wall. The collision of the winds with the cavity wall can cause clumps of cloud material to be stripped away. Mixing of these clumps into the winds mass-loads the flow and enhances the X-ray emission measure. The position and shape of the reverse shock plays a key role in determining the strength and hardness of the X-ray emission. In some models the reverse shock is oblique to much of the stellar and disk outflows, whereas in others it is closely normal over a wide range of polar angles. For reasonable stellar and disk wind parameters the integrated count rate and spatial extent of the intensity peak for X-ray emission agree with Chandra observations of the deeply embedded MYSOs S106 IRS4, Mon R2 IRS3 A, and AFGL 2591. The evolution of the cavity is heavily dependent on the ratio of the inflow and outflow ram pressures. The cavity closes up if the inflow is too strong, and rapidly widens if the outflowing winds are too strong. The velocity shear between the respective flows creates Kelvin-Helmholtz (KH) instabilities which corrugate the surface of the cavity. Rayleigh-Taylor-like instabilities also occur when the cavity wall is pushed forcefully backwards by strong outflows. The opening angle of the cavity plays a significant role and we find that for collimation factors in agreement with those observed for bi-polar jets around massive young stellar objects (MYSOs), a reverse shock is established within ∼ 500 au of the star.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of X-ray emission from young massive star clusters

The evolution of X-ray emission from young massive star clusters is modeled, taking into account the emission from the stars as well as from the cluster wind. It is shown that the level and character of the soft (0.2-10 keV) X-ray emission change drastically with cluster age and are tightly linked with stellar evolution. Using the modern X-ray observations of massive stars we show that the corr...

متن کامل

Forty Years of X-Ray Binaries

In 2012 it was forty years ago that the discovery of the first X-ray binary Centaurus X-3 became known. That same year it was discovered that apart from the High-Mass X-ray Binaries (HMXBs) there are also Low-Mass X-ray Binaries (LMXBs), and that Cygnus X-1 is most probably a black hole. By 1975 also the new class of Be/X-ray binaries was discovered. After this it took 28 years before ESAs INTE...

متن کامل

X-Ray Plasma Diagnostics of Stellar Winds in Very Young Massive Stars

High resolution X-ray spectra of very young massive stars opened a new chapter in the diagnostics and understanding of the properties of stellar wind plasmas. Observations of several very young early type stars in the Orion Trapezium demonstrated that the conventional model of shock heated plasmas in stellar winds is not sufficient to explain the observed X-ray spectra. Detailed X-ray line diag...

متن کامل

Magnetic fields, winds and X-rays of massive stars in the Orion Nebula Cluster

In massive stars, magnetic fields are thought to confine the outflowing radiativelydriven wind, resulting in X-ray emission that is harder, more variable and more efficient than that produced by instability-generated shocks in non-magnetic winds. Although magnetic confinement of stellar winds has been shown to strongly modify the mass-loss and X-ray characteristics of massive OB stars, we lack ...

متن کامل

Magnetic fields, winds and X-rays of massive stars: A spectropolarimetric survey of the Orion cluster

In massive stars, magnetic fields are thought to confine the outflowing radiatively-driven wind, resulting in X-ray emission that is harder, more variable and more efficient than that produced by instability-generated shocks in non-magnetic winds. Although magnetic confinement of stellar winds has been shown to strongly modify the mass-loss and X-ray characteristics of massive OB stars, we lack...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009